
US ERA ARCHIVE DOCUMENT

Glyphosake/Tox

OFFICE OF
PESTICIDES AND TOXIC SUBSTANCES

JIN 23 1986

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

ckasable

MEMORANDUM:

SUBJECT:

EPA Reg. No. 524-343; Rodeo; PP# 3F2956; Glyphosate

in/on shellfish; Revised Section F

Caswell No. 661A

Project No. 1276/1277 Record No. 165737/165739

TO:

Robert Taylor

Product Manager (25)

Registration Division (TS-767)

and

Residue Chemistry Branch

Hazard Evaluation Division (TS-769)

THRU:

Edwin Budd, Section Head

Review Section II Toxicology Branch

Hazard Evaluation Division (TS-769)

FROM:

William Dykstra

Toxicology Branch

Hazard Evaluation Division (TS-769)

William Dykstie 6/9/86
William Dykstie 6/9/86
Wision (TS-769) Who WB 4/23/86

Requested Action:

Review tolerance request for the use of glyphosate on shellfish.

Background:

Tolerance have been established for the combined residues of glyphosate (Roundup; N-[phosphonomethyl] glycine) and its metabolite aminomethyl phosphonic acid in several raw agricultural commodities (40 CFR 180.364).

The Agency recently requested the SAP to consider the potential oncogenicity of glyphosate. In their 2/24/86 report, the Panel response is presented below:

"In the instance of Glyphosate, the Panel concurs that the data on renal tumors in male mice are equivocal. Only small numbers of tumors were found in any group, including those at the highest dose which appear to have exceeded the

maximal tolerated dose. The vast majority of the pathologists, who examined the proliferative lesion in the male control animal, agreed that the lesion represented a renal adenoma. Therefore, statistical analysis of the data should utilize this datum. In addition, the statistical analysis shall be age-adjusted; when this is done, no oncogenic effect of Glyphosate is demonstrated using concurrent controls. Nevertheless, the occurrence of three neoplasms in high dose male mice is unusual and using historical controls is statistically highly significant. Furthermore, categorization of the oncogenic risk of Glyphosate is complicated by the fact that doses used in the rat study do not appear to have reached the maximal tolerated dose. Under these circumstances, the Panel does not believe that it is possible to categorize glyphosate clearly into Group C (possible human carcinogen) or Group E (no evidence of carcinogenicity for humans). The Panel proposes that Glyphosate be categorized as Group D (not classified) and that there be data call-in for further studies in rats and/or mice to clarify unresolved questions.

Regarding the issue of using historical or concurrent controls, the Panel believes that this has to be decided on a case-by-case basis. For Glyphosate, the historical control data support that there may be reason for concern. However, the level of concern raised by historical control data was not great enough to diplace putting primary emphasis on the concurrent controls."

If the Agency concurs with the SAP position, glyphosate may not be considered oncogenic in male mice. If this is the case, the Delaney clause may not apply to food additive petitions (H petitions, 409 tolerances) for glyphosate.

Review:

1. No new toxicity data were submitted. Toxicology Branch one-liners are attached.

2. Revised Section F:

Proposed residue tolerance for shellfish of 3.0 ppm for combined residues of glyphosate and its metabolite aminomethylphosphonic acid.

3. Calculation of the ADI:

The ADI is based on the NOEL of 10 mg/kg/day in the 3-generation rat reproduction study. A 100 fold safety factor was used to calculate the ADI.

ADI =
$$\frac{\text{NOEL}}{100}$$
 = 10 mg/kg/day X $\frac{1}{100}$

ADI = 0.10 mg/kg/day

The MPI is 6.0 mg/day for a 60 kg person.

4. Calculation of the TMRC and percent of ADI utilized.

The requested tolerance is for 3.0 ppm on shellfish.

There is already a tolerance for fish/shellfish of 0.25 ppm (see the TMRC is as follows:

computer printout)

TMRC =
$$\frac{\frac{\text{Tolerance}}{3.0 \text{ ppm}} \text{ X} \qquad \frac{\frac{\text{Diet}}{1.5 \text{ kg}} \text{ X}}{\text{day}} \qquad \frac{\frac{\text{Food Factor}}{1.08}}{100}$$

 $TMRC = \frac{0.04455}{0.0486} \text{ mg/day}$

Percent increase in ADI = $\frac{\text{TMRC}}{\text{MPI}}$ X 100

Percent increase in ADI = $\frac{0.04455}{0.0486}$ mg/day X 100 $\frac{0.0445}{6.0}$ mg/day

Percent increase in ADI = 0.74

5. Published tolerances utilize 22.81% the ADI. Unpublished, Tox approved tolerances utilize the ADI to 23.73%. The current action utilizes 0.81% of the ADI (computer printout attached).

change by Budd

Conclusion:

Depending on the Agency's position relative to the SAP conclusions about glyphosate, the requested tolerances may or may not be toxicologically supported.

A repeat of the chronic/oncogenic rat feeding study with glyphosate at dosages corresponding to the maximum tolerated dose and a repeat of the mouse oncogenicity study will be required to further address the MTD issue relating to the oncogenicity of glyphosate.

TOXICOLOGY BRANCH ADI PRINTOUT Date: 06/10/86

Glyphosate (+ salts) 3gen reprod.- rat ADI = 0.100000 mg/kg/day Caswell #661A NOEL = 10.0000 mg/kg Safety Factor = 100 CFR No. 180.364 LEL = 30.0000 mg/kg Status: TOX complete. ORD complete 3/11/86.

DRAFT

RESIDUE CONTRIBUTION OF PUBLISHED TOLERANCES

			TOLERANCE	PETITION	FOOD	
		CROP	(PPM)	NUMBER	FACTOR	MG/DAY
						•
		Asparagus	0.200		0.14	0.000420000
		Avocados	0.200		0.03	0.00090000
		Bananas	0.200		1.42	0.004260000
		Citrus fruits	0.200		3.81	0.011430000
		Coffee	1.000		0.75	0.011250000
		Cottonseed (oil)	15.000		0.15	0.033750000
		Cranberries	0.200		0.03	0.00090000
		Cucurbits	0.100		2.84	0.004260000
		Fish, shellfish	0.250		1.08	0.004050000
		Fruiting vegetables	0.100		2.99	0.004485000
		Grain crops	0.100		13.79	0.020685000
		Grapes, including raisins	0.100		0.49	0.000735000
		Hops	0.100		0.03	0.000045000
8	30	Leafy vegetables	0.200		2.76	0.008280000
		Mangoes	0.200		0.03	
9	96	Molasses	20.000		0.03	
10)1	Nuts	0.200		0.10	
10)4	Olives	0.100		0.06	
10	9	Papayas	0.200		0.03	
		Peanuts	0.100		0.36	0.000540000
12	23	Pineapple	0.100		0.30	
		Pome fruits	0.200		2.79	
13	8	Root crop vegetables	0.200		11.00	0.033000000
14	13	Seed and Pod vegetables	0.200		3.66	0.010980000
14	16	Small fruits and berries	0.100		0.83	0.001245000
14	18	Soybeans (oil)	6.000		0.92	0.082800000
15	51	Stone fruits	0.200		1.25	0.003750000
15	54	Sugar, cane and beet	2.000		3.64	0.109200000
		Tea	4.000		0.07	0.004200000
18	34	Guava	0.200		0.03	0.00090000
19	8	Potable water	0.500		133.33	0.999975000
20	2	Palm oil	0.100		0.03	0.000045000
20	3	Kidney	0.500		0.03	0.000225000
		Pistachio nuts	0.200		0.03	0.000090000
		Liver	0.500		0.03	0.000225000

TMRC 0.022810 mg/kg/day (60kg BW, 1.5kg diet)

% ADI 22.809750

RESIDUE CONTRIBUTION OF TOX-APPROVED TOLERANCES

CROP	TOLERANCE (PPM)	PETITION NUMBER	FOOD FACTOR	MG/DAY			
35 Coconut 148 Soybeans (oil)	0.030 4.000		0.03 0.92	0.000013500 0.055200000			
TMRC 0.023730 mg/kg/day (60kg	% ADI 23.729975						
RESIDUE CONTRIBUTION OF NEW (PENDING) TOLERANCES							
CROP	TOLERANCE : (PPM) 2.750	PETITION NUMBER	FOOD FACTOR	MG/DAY 0.04455			
59 Fish, shellfish	2.000	3F2956	1.08	0.048600000			
0.014473 TMRC 0.024540 mg/kg/day (60kg	% ADI 24.539975 24.473000						

Shariff 2286